Appendix C

Airport Layout Plan (ALP)

Federal Aviation Administration (FAA) Approval – August 8, 2013
Airspace Study Number (ASN): 2013-ASO-715-NRA
August 8, 2013

Mr. Mark Day, PE, AAE
Blue Grass Airport
4000 Terminal Drive
Suite 206
Lexington, KY 40510

Dear Mr. Day:

Re: Blue Grass Airport, Lexington, KY
Conditional Approval of Airport Layout Plan (ALP)
ASN: 2013-ASO-715-NRA

The Federal Aviation Administration (FAA) conditionally approves your Airport Layout Plan (ALP) for the Blue Grass Airport, dated August 2, 2013. This approval is subject to the condition that the proposed airport development listed below requires environmental processing and may not be undertaken without the FAA’s prior written environmental approval.

- Future runway/taxiway projects
- Future improvements/changes to passenger terminal building
- Future auto parking facilities
- Future road construction and relocations (including perimeter roads)
- Future hangars and aircraft parking facilities
- Future lighting/navigation/weather aid development
- Future aircraft rescue and firefighting (ARFF) and air traffic control (ATC) facilities

FAA approval of your ALP means that the proposed airport development shown on the plan and noted above was reviewed on the basis of safety, utility and efficiency.

However, our approval does not represent a commitment to provide federal financial assistance to implement any development or air navigation facilities shown on the plan, nor does it mean that we find funding of the proposed airport development justified.

At the present time, the FAA does not consider the following project justified to accommodate existing or future aviation demand:

- Extension of Runway 9/27

Projects associated with this development item, such as parallel taxiways and road relocations, are also considered to be not justified at this time.
Please be aware that you are required to notify this office at least 60 days prior to the start of any construction on the airport. In addition, you must submit proper notification to our office and receive FAA airspace approval. Furthermore, the design and location of any storm water retention/detention facilities on or near the airport must comply with FAA Advisory Circular 150/5200-33 “Hazardous Wildlife Attractants on or Near Airports”, and must be approved on the ALP prior to construction.

If you have any questions concerning the approval, please contact me at 901-322-8192.

Sincerely,

[Signature]

Aaron Braswell
Environmental Protection Specialist

Enclosure

C: Doug Gregory, CMT (w/enclosure)
 Allan Young, FAA (w/enclosure)
 Stephanie Gadson, FAA (w/enclosure)
 Shafat Ahmad, FAA (w/enclosure)
 Glenn Finnegan, FAA (w/enclosure [electronic copy])
 Diane English, FAA (w/enclosure)
 Ron Patton, FAA (w/enclosure)
LEXINGTON AIR TRAFFIC CONTROL TOWER,
BLUE GRASS AIRPORT AND
DELTA AIRLINES AND CONTRACTED GROUND HANDLER

LETTER OF AGREEMENT

EFFECTIVE: November 23, 2010

SUBJECT: GATES B7 AND B8 PUSH BACK

1. PURPOSE:
 This Agreement establishes procedures to be used for controlling aircraft push backs from specified gates requiring clearance through controlled movement areas. Any signatory may withdraw from the provisions of this Letter of Agreement upon written notification to the other signatories.

2. CANCELLATION:

3. BACKGROUND:
 Expansion of Terminal Concourse B added several new gates and extended this concourse toward Taxiway C, a controlled movement area. This action created an area of non-visibility on Taxiway C and of aircraft parked at Gates B7 and B8. Taxiway C is the only taxiway connecting General Aviation parking areas with the runway environment. The close proximity of Gates B7 and B8 to the controlled movement area requires an infringement of Taxiway C during push back maneuvers. As a result, operations from Gates B7 and B8 were subjected to a Safety Risk Management (SRM) Panel. To mitigate risk associated with operations from Gates B7 and B8, the SRM Panel recommended a Letter of Agreement establishing proper push back procedures.

4. SCOPE:
 The procedures contained herein are for the control of aircraft pushing back from Terminal Concourse B Gates B7 and B8.

5. DISTRIBUTION:
 This Letter of Agreement is distributed to Lexington Air Traffic Control Tower, Lexington-Fayette Urban County Airport Board, Delta Airlines, subsidiary operators of Delta Airlines, and CVG Hub Manager.

JAN 28 2011

FAA APPROVAL JEM
 INSPECTOR
6. RESPONSIBILITIES:

a. Delta Airlines / Contracted Below-Wing Handlers:
 i. Delta Airlines or its Contracted Below Wing personnel shall be responsible for:
 1. Ensuring that the flight crew members have received permission from local ATCT Ground Control on 121.9 to push-back in the movement area of Taxiway C.
 2. Ensuring that aircraft pushing back from Gates B7 and B8 have no obstructions that would prevent aircraft from pushing into the requested taxi spot clear of Taxiway C.
 3. Ensuring that all flight crews and maintenance crews operating at Gates B7 and B8 comply with the procedures of this Letter of Agreement.
 4. Ensuring that wing walkers are used during all push backs.
 5. Ensuring that all ground personnel, including maintenance crews, responsible for aircraft push backs receive initial training as well as annual refresher training on the contents of this Letter of Agreement.

b. Lexington Tower:
 i. Lexington Tower personnel shall be responsible for:
 1. For all aircraft movement on Taxiway “C”.
 2. Controlling aircraft pushing back from Gates B7 and B8. Ensure that all controllers receive initial training as well as annual refresher training on the contents of this Letter of Agreement.

c. Blue Grass Airport:
 i. Blue Grass Airport personnel shall be responsible for:
 1. Ensuring pavement markings include taxi lines and/or push back spots which guarantee obstruction clearances for aircraft conducting push back operations.

7. PROCEDURES:

a. Flight Crews and Maintenance Taxi Crews:
 i. Shall advise Clearance Delivery or Ground Control of their gate location, B7 or B8, at the time their IFR departure clearance is requested.
 ii. Shall contact Ground Control on frequency 121.9 to request push back.
 iii. Shall state call-sign, gate number, and push back destination spot when requesting push back.
 Example: “Lexington Ground, aircraft call-sign, Gate B8, request push back to spot 2.”

 JAN 25, 2011

 FAA APPROVAL ___________ JEM ___________
 INSPECTOR
b. Lexington Air Traffic Control Tower:
 i. Shall ensure that potential conflicts between aircraft taxiing on Taxiway “C” and aircraft requesting push backs are resolved prior to approving a push back clearance request.
 ii. Shall not taxi aircraft on Taxiway “C” past aircraft pushing back through the controlled movement area until the push back aircraft is observed clear of the controlled movement area.

Vincent Marsh
Delta Station Manager
Delta Airlines

Kristine Tucker
Air Traffic Manager
Lexington Air Traffic Control Tower

Eric J. Frankl, AAE
Executive Director
Blue Grass Airport
Airport Layout Plan (ALP)
2013 Update

Airport Reference Code - Runway 4/22: C/D-III (Existing/Future)
Airport Reference Code - Runway 9/27: B-II (Existing) & C-II (Future)

Index To Sheets

1. Cover Sheet
2. Existing Airport Layout Drawing
3. Future Airport Layout Drawing
4. Data Tables
5. Terminal Area - Passenger Terminal
6. Terminal Area - East General Aviation
7. Terminal Area - West General Aviation
8. Part 77 Sheet
9. Runway 4-22 Approach & Runway Profiles
10. Runway 9-27 Approach & Runway Profiles
11. Inner Approach Profile - Runway 4 (Existing & Future)
12. Inner Approach Profile - Runway 27 (Existing & Future)
13. Inner Approach Profile - Runway 09 (Existing)
14. Inner Approach Profile - Runway 09 (Future)
15. Inner Approach Profile - Runway 27 (Existing)
16. Inner Approach Profile - Runway 27 (Future)
17. Land Use (Existing & Future)
18. Airport Property Map (Exhibit "A")
1. Base Map was developed using photogrammetric mapping dated March 2012, an aerial photo dated June 2012, and the previous Airport Layout Plan Approved March 6, 2009.

2. ILS Hold Location Depicted On Taxiway A Identified For Planning Purposes. Relocation Of The Runway 22 Glideslope Antenna And Equipment May Be Required From Its Existing Condition Subject To FAA Direction.

General Notes

1. The Base Map was developed using photogrammetric mapping dated March 2012, an aerial photo dated June 2012, and the previous Airport Layout Plan Approved March 6, 2009.

2. Pavement Marking Depicted Are Based On Existing And Future Conditions. Markings Identified Are For Graphical Purposes Only.

Legend

- **Airport Road**
- **Aviator Road**
- **Terminal Area-East General Aviation**

Object Free Area (O.F.A.)

<table>
<thead>
<tr>
<th>Description</th>
<th>Existing</th>
<th>Future</th>
<th>Description</th>
<th>Existing</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold Lights</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Runway Safety Area (R.S.A.)</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>920 Ground Contours</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Restriction Line (B.R.L.)</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avigation Easement</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lakes Ponds Or Streams</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airport Buildings</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airfield Pavement</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Runway Protection Zone (R.P.Z.)</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airport Property Line</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Runway End Identifier Light (REIL)</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airport Rotating Beacon</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Cone And Segmented Circle</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airfield Pavement Removal</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILS-localizer Antenna & Critical Area</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILS-glide Slope Antenna & Critical Area</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision Approach Path Indicator (PAPI)</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Dispensing Location</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airport Buildings Removal</td>
<td></td>
<td></td>
<td>TSA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAA Approved (8/2/2013) - ASN: 2013-ASO-715-NRA
Object ID Description Object Elevation

<table>
<thead>
<tr>
<th>Object ID</th>
<th>Description</th>
<th>Elevation 1</th>
<th>Elevation 2</th>
<th>Difference</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBS-0341</td>
<td>Communication Tower</td>
<td>1,106.89'</td>
<td>1,129.00'</td>
<td>-22.11'</td>
<td>No Action</td>
</tr>
<tr>
<td>OBS-0337</td>
<td>Antenna</td>
<td>1,077.79'</td>
<td>1,060.97'</td>
<td>16.82'</td>
<td>Previously Studied, Same Location as OBS-0305</td>
</tr>
<tr>
<td>OBS-0305</td>
<td>Water Tower</td>
<td>1,111.72'</td>
<td>1,129.00'</td>
<td>-17.28'</td>
<td>Previously Studied, Same Location as OBS-0305</td>
</tr>
<tr>
<td>OBS-0283</td>
<td>Pole</td>
<td>1,015.92'</td>
<td>1,038.10'</td>
<td>-22.18'</td>
<td>No Action</td>
</tr>
<tr>
<td>OBS-0258</td>
<td>Pole</td>
<td>1,014.79'</td>
<td>1,021.52'</td>
<td>-6.73'</td>
<td>No Action</td>
</tr>
<tr>
<td>OBS-0257</td>
<td>Pole</td>
<td>1,014.98'</td>
<td>1,020.03'</td>
<td>-5.05'</td>
<td>No Action</td>
</tr>
<tr>
<td>OBS-0237</td>
<td>Power Transmission Pole</td>
<td>992.57'</td>
<td>995.62'</td>
<td>-3.05'</td>
<td>No Action</td>
</tr>
<tr>
<td>OBS-0228</td>
<td>Power Transmission Pole</td>
<td>984.29'</td>
<td>1,002.07'</td>
<td>-17.78'</td>
<td>No Action</td>
</tr>
<tr>
<td>OBS-0235</td>
<td>Power Transmission Pole</td>
<td>1,021.23'</td>
<td>1,043.83'</td>
<td>-22.61'</td>
<td>No Action</td>
</tr>
<tr>
<td>OBS-0227</td>
<td>Power Transmission Pole</td>
<td>1,008.65'</td>
<td>1,024.95'</td>
<td>-16.30'</td>
<td>No Action</td>
</tr>
<tr>
<td>OBS-0114</td>
<td>Trees</td>
<td>1,056.95'</td>
<td>1,057.31'</td>
<td>-0.36'</td>
<td>No Action</td>
</tr>
<tr>
<td>OBS-0113</td>
<td>Trees</td>
<td>1,009.32'</td>
<td>993.41'</td>
<td>15.91'</td>
<td>To Be Studied</td>
</tr>
<tr>
<td>OBS-0033</td>
<td>Trees</td>
<td>1,020.83'</td>
<td>1,028.06'</td>
<td>-7.23'</td>
<td>No Action</td>
</tr>
<tr>
<td>OBS-0193</td>
<td>Trees</td>
<td>1,052.81'</td>
<td>1,048.34'</td>
<td>4.47'</td>
<td>To Be Studied</td>
</tr>
<tr>
<td>OBS-0149</td>
<td>Trees</td>
<td>964.56'</td>
<td>970.09'</td>
<td>-5.52'</td>
<td>No Action</td>
</tr>
<tr>
<td>OBS-0111</td>
<td>Trees</td>
<td>1,049.94'</td>
<td>1,025.90'</td>
<td>24.04'</td>
<td>To Be Studied</td>
</tr>
<tr>
<td>OBS-0032</td>
<td>Trees</td>
<td>1,037.22'</td>
<td>1,030.21'</td>
<td>7.01'</td>
<td>To Be Studied</td>
</tr>
</tbody>
</table>

General Notes

- Road elevations are estimated and include a 15 foot (Public road) or a 17 foot (Interstate) clearance per FAR Part 77 Obstruction Standard and the 2012 aerial mapping are numbered starting with (Obs-001) according to the GIS database created for the FAA AGIS.
- Digital Obstruction Points (DOF) were acquired through the FAA web site with an effective date of December 10, 2012. DOF objects identified by (21-___)
- Road points were created and developed for the analysis of FAR Part 77 Surfaces from the USGS maps Runways (sheets #11-16).
- Manmade objects located within 25' vertically of the Part 77 Surface were identified for informational purposes.
- Obstacles identified from 2012 aerial mapping, collected in accordance with AC 150/5300-18B standards.

Plan View

- See Inner Approach Profile sheets for information regarding objects located in close proximity to the Airport Navaids and Signage not identified as these objects are fixed by function.

Notes

- No obstructions identified as violating FAR Part 77 Obstruction Standard.
1. See Inner Approach Profile Sheets for information on objects located in close proximity, 0 to 66 feet.

5. Runway profile developed off of field survey data collected in accordance with AC 150/5300-18B standards.

Foot (railroad) clearance per FAR Part 77 obstruction standard of December 10, 2012.

DOF objects identified by (21-___) 5,000' from the runway end (Sheets #11-16).

Available to the public. Ground profiles beyond aerial mapping limits are depicted for planning purposes.

General Notes:

- Existing Runway 22 End Elevation 972.66'
- Versailles Road DEP TSS APP TSS DEP
- Old Frankfort Pike DEP TSS APP
- CSX Railroad DEP TSS APP
- Delany Ferry Road TSS DEP
- Norfolk Southern Railroad DEP TSS APP
- U.S. 25 DEP TSS.
- Interstate 64 Road APP TSS DEP
- Military Pike TSS DEP APP
- Parkers Mill Road DEP TSS APP
- Airport Perimeter Road DEP TSS
- Route 1973 DEP TSS APP
- Route 922 DEP TSS APP.

 JOB No: 09 Runway 4-22 Approach & Runway Profile
 SURVEY BOOK #: 09 Runway 4-22 Approach & Runway Profile
 UPDATE BY: Douglas Gregory
 LAYOUT: 09 Runway 4-22 Approach & Runway Profile
 DESIGN BY: Douglas Gregory

THIS BAR IS EQUAL TO 2" AT FULL SCALE (22x34).
See Note 1
1. Base map was developed using photogrammetric mapping dated (March).

2. Obstacles identified from 2012 aerial mapping, collected in accordance with FAA requirements.

3. The road points were created and depicted for the analysis of FAR Part 77 Surface Runway Protection Zones (RPZs).

4. The inner approach surface drawing is depicted to a height of 100' above NAVDAT.

5. The inner portion of the approach surfaces have been shown to supersede AC 150/5300-13A Table 3-2, Criteria #7. Inner approach surface points were created.

6. The inner approach surface points have been shown to supersede AC 150/5300-18B standards are numbered starting with (Obs-001).

7. Runway 4 was evaluated utilizing AC 150/5300-13A Table 3-2, Criteria #7. Runway 4-22 Extended Centerline Runway Protection Zones where their dimensions are the same.

8. Airport Threshold Siting Surface Penetrations to be mitigated by Airport.

9. Trees within 10' of the Part 77 Surface, are identified for planning purposes.
3. The road points were created and depicted for the analysis of FAR Part 77 surfaces from the 2012 aerial imagery at 3" pixel resolution, and are numbered starting with (Rd-0001).

4. Road elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.

5. The inner approach surface drawing is depicted to a height of 100' above the runway end elevation. See sheet 8, the Airport Airspace Drawing for a complete depiction of Part 77 surfaces.

6. Obstacles identified from 2012 aerial mapping, collected in accordance with AC 150/5300-18B standards are numbered starting with (Obs-001).

7. Existing Terrain Profile Along the runway points were created and depicted for the analysis of FAR Part 77 surfaces from the 2012 aerial imagery at 3" pixel resolution, and are numbered starting with (Obs-001).

8. Airport Threshold Siting Surface Penetrations to be mitigated by Airport.

9. Trees within 10' of the Part 77 Surface, are identified for planning purposes.

10. Runway Protection Zones where their dimensions are the same.
1. Base map was developed using photogrammetric mapping dated (March) 2012, and aerial photo dated (June) 2012, and the previous Airport Layout Plan approved March 6, 2009.

2. Obstacles identified from 2012 aerial mapping, collected in accordance with AC 150/5300-18B standards are numbered starting with (Obs-001).

3. The road points were created and depicted for the analysis of FAR Part 77 (Existing) - Day Only.

4. The inner portion of the approach surfaces have been shown to supersedeultipart 77 surfaces.

5. The inner approach surface drawing is depicted to a height of 100' above number starting with (Rd-0001).

6. Runway 9 was evaluated utilizing AC 150/5300-13A Table 3-2, Criteria #3 Runway 9 End Elevation.

7. Runway Protection Zones where their dimensions are the same.

8. Airport Threshold Siting Surface Penetrations to be mitigated by Airport.

9. Trees within 10' of the Part 77 Surface, are identified for planning purposes.
1. Base map was developed using photogrammetric mapping dated (March 2009).
2. Obstacles identified from 2012 aerial mapping, collected in accordance with FAR Part 77 AC 150/5300-18B standards.
3. The road points were created and depicted for the analysis of FAR Part 77 Runway Protection Zones where their dimensions are the same.
4. Road elevations are estimated and include a 15 foot (public road) or a 10 number starting with (Rd-0001).
5. The inner approach surface drawing is depicted to a height of 100' above current terrain.
6. The inner portion of the approach surfaces have been shown to supersede current terrain.
7. Trees within 10' of the Part 77 Surface, are identified for planning purposes.
8. Trees within 10' of the Part 77 Surface, are identified for planning purposes.
9. Trees within 10' of the Part 77 Surface, are identified for planning purposes.
10. Trees within 10' of the Part 77 Surface, are identified for planning purposes.
FAA Approved (8/2/2013) - ASN: 2013-ASO-715-NRA

Threshold Siting Surface

Runway Safety Area (R.S.A.)

Runway Protection Zone (RPZ)

Taxiway Safety Area (T.S.A.)

Existing Runway End Elevation: 973.72

Surface Slope 20:1

Surface Slope 34:1

Surface Slope 40:1

General Notes:
- Base map was developed using photogrammetric mapping dated (March) 2012, and aerial photo dated (June) 2012, and the previous Airport Layout according to the GIS database created for the FAA AGIS.
- Obstacles identified from 2012 aerial mapping, collected in accordance with AC 150/5300-13A Table 3-2, Criteria #3, are shown.
- Runway 27 was evaluated utilizing AC 150/5300-13A Table 3-2, Criteria #3, to determine the inner approach surface.
- The inner portion of the approach surfaces have been shown to supersede the runway end elevation. See sheet 8, the Airport Airspace Drawing for a complete depiction of Part 77 surfaces.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Runway 27 was evaluated utilizing AC 150/5300-13A Table 3-2, Criteria #3, to determine the inner approach surface.
- The inner portion of the approach surfaces have been shown to supersede the runway end elevation. See sheet 8, the Airport Airspace Drawing for a complete depiction of Part 77 surfaces.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
- The inner approach surface drawing is depicted to a height of 100' above existing terrain profile along Runway 9-27 Extended Centerline.
- Trees within 10' of the Part 77 Surface, are identified for planning purposes.
- Airport Threshold Siting Penetrations to be mitigated by Airport.
- Runway Protection Zones where their dimensions are the same.
- Roads elevations are estimated and include a 15 foot (public road) or a 10 foot (service road) clearance per FAR Part 77 Obstruction standards.
The road points were created and depicted for the analysis of FAR Part 77 surfaces. The inner approach surface drawing is depicted to a height of 100’ above the runway end elevation. See sheet 8, the Airport Airspace Drawing for a complete depiction of Part 77 surfaces.

7. Runway 27 was evaluated utilizing AC 150/5300-13A Table 3-2, Criteria #5 for the Departure Surface. The test points were created and depicted as analyzed in Section 21 of FAR Part 77 criteria (Rd-0042).

4. Road elevations are estimated and include a 15 foot (public road) or a 10 foot (airport road) surface from the road centerline to the top of the road.

5. The inner approach surface drawing is depicted to a height of 100’ above the runway end elevation. See sheet 8, the Airport Airspace Drawing for a complete depiction of Part 77 surfaces.

9. Trees within 10’ of the Part 77 Surface, are identified for planning purposes.

2. The existing terrain profile along the extended runway centerline is depicted on sheet 12, the Airport Terrain Drawing.

1. The final project is reviewed and approved by the FAA for compliance with FAR Part 77.

3. Road elevations are estimated and include a 15 foot (public road) or a 10 foot (airport road) surface from the road centerline to the top of the road.

6. The final project is reviewed and approved by the FAA for compliance with FAR Part 77.
Updated By: Ryan Johnson

File: 18 Property Map

LAYOUT: 18 Property Map

MRW

8004000

NORTH

Scale in Feet

DRG/RPJ

DRG

BMH

St. Louis, Missouri

Peoria, Illinois

Rockford, Illinois

Aurora, Illinois

Springfield, Illinois

Indianapolis, Indiana

Springfield, Missouri

Edwardsville, Illinois

Chicago, Illinois

Columbus, Ohio

Avigation Easement

Airport Buildings

Airfield Pavement

Runway Protection Zone (R.P.Z.)

Airport Property Line

N/A

Far Part 77 Surface

Airfield Pavement Removal

Airport Buildings Removal

Legend

Existing

Future

Description

